Answer:
The allowable values for the principle quantum number (n) are integers greater than zero.
The allowable values for the angular momentum quantum number (l) are integers from 0 to n-1.
The allowable values for the magnetic quantum number (ml) are integers from -l to l.
The allowable values for the spin quantum number (ms) are -1/2 and 1/2.
Explanation:
<em>Identify allowable combinations of quantum numbers for an electron. Select all that apply.</em>
- <em>The allowable values for the principle quantum number (n) are integers greater than zero. </em>TRUE. The principal quantum number (n) represents the level of energy in which an electron is and can take positive integer values.
- <em>The allowable values for the angular momentum quantum number (l) are integers from 0 to n-1.</em> TRUE. The angular quantum number (l) represents the sublevel of energy and the kind of orbital an electron is in and can take integer values from 0 to n-1. For instance, if n = 1, l can take the value "0", which represents the sublevel and orbital "s".
- <em>The allowable values for the magnetic quantum number (ml) are integers from -l to l.</em> TRUE. The magnetic quantum number (ml) represents the orientation of an orbital in space and can take integers values from -l to +l. For instance, if l = 1 (p orbital), ml can take the values -1, 0 and 1, which refer to orbitals px, py and pz.
- <em>The allowable values for the spin quantum number (ms) are -1/2 and 1/2. </em>TRUE. The spin quantum number (ms) represents the spin of the electron and can take values -1/2 and +1/2.
Answer:
A. Energy must be conserved in a nuclear reaction
Explanation:
Answer:
Energy
Explanation:
A sugar group would be used for carbohydrates or nucleic acids. An adenosine group would be used in ATP formation if I recall correct. And disaccharides are just two monosaccharides linked together, so that would also be for carbohydrates. Therefore, energy is the answer.
Answer:
divide the volume value by 1000
So 3828/1000=3.828
Answer is: volume will be 3.97 liters.
Boyle's Law: the pressure volume law - volume of a given amount of gas held varies inversely with the applied pressure when the temperature and mass are constant.
p₁V₁ = p₂V₂.
p₁ = 755 torr.
V₁ = 5.00 l.
p₂ = 1.25 atm · 760 torr/atm.
p₂ = 950 torr.
755 torr · 5 l = 950 torr · V₂.
V₂ = 755 torr · 5 l / 950 torr.
V₂ = 3.97 l.
When pressure goes up, volume goes down.
When volume goes up, pressure goes down.