Answer:
Shortest carbon-nitrogen bond = CH3CN, strongest carbon-nitrogen bond = CH3CN
Explanation:
Bond length is defined as the distance between the centers of two covalently bonded atoms, in this case; carbon and hydrogen.
The length of the bond is determined by the number of bonded electrons (the bond order).
The higher the bond order, the stronger the pull between the two atoms and the shorter the bond length.
Therefore, bond length increases in the following order: triple bond < double bond < single bond.
CH3CN - There's a triple bond between Carbon and Nitrogen
CH3NH2 - The bond between carbon and nitrogen is a single bond.
CH2NH - The bond between carbon and nitrogen is a double bond.
The specie with the shortest carbon-nitrogen bond is CH3CN (acetonitrile).
The species with the strongest carbon-nitrogen bond is also CH3CN (acetonitrile) because it contains a triple bond. A triple bond contains one sigma and 2 pi bonds. The energy required to break it is more when compared to the other bonds hence, it is the strongest bond.
The atomic number is the number of Protons on the nucleus of the atom, whereas the mass number of some isotope is the mass of the protons plus the mass of the neutrons. That's the difference between isotopes: number of neutrons.
Ask me if you need any help ;)
Answer:
We don't have the passage. A random sampling of surfactant uses includes:
- removal of oily materials from objects (clothes and dishes)
- forms remarkable structures called bubbles
- Assists in forming emulsions (e.g., mayonaise and paints)
Explanation:
The structure of a surfactant makes one end of a molecule hydrophilic and the other end hydrophobic. In water, they self-assemble into micelles, an arrangement in which the hydrophobic ends align towards the center, and the hydrophilic ends are pointed outwards to the water. This self-assembly is apparant when bubbles are made. The molecules quickly align themselves such that the hyrophilic ends are oriented inwards towards a thin layer of water and the hydrophobic ends are pointed outward to the air. This arrangement allows a mono-molecular sphere of water molecules to remain stable enough to float, reflect light, and please. These same properties allow the inverse to occur. Soap molecules surround a hydrophobic mass (e.g., the hamburger grease on your shirt) and solubilize it into small micelles which are then carried away in the surrounding water.
<span>The answer is B. Convection occurs when hot/warm
water rise to the top and the cold water goes to the bottom in a vessel. This is
because hot/warm water is less dense than cold water. Additionally, convection
currents are well perceptible in air and water and fluid substances that are
poor conductors of heat</span>
<em>B</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>b</em><em>r</em><em>o</em><em>/</em><em>s</em><em>i</em><em>s</em>