The name of this Ionic Compound is Calcium oxide.
<u>Answer:</u> The nuclear binding energy of the given element is 
<u>Explanation:</u>
For the given element 
Number of protons = 3
Number of neutrons = (6 - 3) = 3
We are given:

M = mass of nucleus = 
![M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu](https://tex.z-dn.net/?f=M%3D%5B%283%5Ctimes%201.00728%29%2B%283%5Ctimes%201.00866%29%5D%3D6.04782amu)
Calculating mass defect of the nucleus:
![\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol](https://tex.z-dn.net/?f=%5CDelta%20m%3DM-A%5C%5C%5CDelta%20m%3D%5B6.04782-6.015126%29%5D%3D0.032694amu%3D0.032694g%2Fmol)
Converting this quantity into kg/mol, we use the conversion factor:
1 kg = 1000 g
So, 
To calculate the nuclear binding energy, we use Einstein equation, which is:

where,
E = Nuclear binding energy = ? J/mol
= Mass defect = 
c = Speed of light = 
Putting values in above equation, we get:

Hence, the nuclear binding energy of the given element is 
Answer:
A "squeaky" pop sound is heard.
Explanation:
When a metal reacts with hydrochloric acid, it produces the metal chloride (salt) and further liberates hydrogen gas which is a colourless and odourless gas.
Equation of the reaction
M(s) + HCl(aq) --> MgCl(aq) + H2(g)
A burning splint test is carried out for the identification of gases in the laboratory. A characteristic property of Hydrogen gas is that it gives a distinctive 'squeaky pop' sound.
Hydrogen is easily ignited, as it is flammable over a wide range of concentrations in air.