Answer:
I am a grade six student but I am very interested in chemistry
Explanation:
I sorry but this is NOT chemistry
Number 3:
Chlorine, Sodium, Sulfate, Magnesium, and Calcium.
Number 4:
The salt Increases/Decreases the density.
Hope this helps you!
:)
Answer:
255.6
Explanation:
If you have 12 gallons and get 21.3mpg,
-Multiply 21.3 by 12
-you can travel 255.6 miles before running out of gas.
-If you need to estimate, round up to 256 miles.
Answer: The Kelvin scale is related to the Celsius scale. The difference between the freezing and boiling points of water is 100 degrees in each, so that the kelvin has the same magnitude as the degree Celsius.
Explanation:
Celsius is, or relates to, the Celsius temperature scale (previously known as the centigrade scale). The degree Celsius (symbol: °C) can refer to a specific temperature on the Celsius scale as well as serve as a unit increment to indicate a temperature interval(a difference between two temperatures or an uncertainty). “Celsius” is named after the Swedish astronomer Anders Celsius (1701-1744), who developed a similar temperature scale two years before his death.
K = °C + 273.15
°C = K − 273.15
Until 1954, 0 °C on the Celsius scale was defined as the melting point of ice and 100 °C was defined as the boiling point of water under a pressure of one standard atmosphere; this close equivalence is taught in schools today. However, the unit “degree Celsius” and the Celsius scale are currently, by international agreement, defined by two different points: absolute zero, and the triple point of specially prepared water. This definition also precisely relates the Celsius scale to the Kelvin scale, which is the SI base unit of temperature (symbol: K). Absolute zero—the temperature at which nothing could be colder and no heat energy remains in a substance—is defined as being precisely 0 K and −273.15 °C. The triple point of water is defined as being precisely 273.16 K and 0.01 °C.
Answer:
Dear user,
Answer to your query is provided below
When small amount of acid was added to buffered solution, pH will change very less.
Explanation:
Buffer solution resists change in ph on adding small amount of acid or base but when we calculate the value of buffer capacity we take the change in ph when we add acid or base to 1 lit solution of buffer.This contradicts the definition of buffer solution.