It decreases it's temperature and it take about 10 hours for it to decrease
Yes buba booey
To determine the volume of both concentration of vinegar, we need to set up two equations since we have two unknowns.
For the first equation, we do a mass balance:
mass of 100% vinegar + mass of 13% vinegar = mass of 42% vinegar
Assuming they have the same densities, then we can write this equation in terms of volume.
V(100%) + V(13%) = V(42%)
we let x = V(100%)
y = V(13%)
x + y = 150
For the second equation, we do a component balance:
1.00x + .13y = 150(.42)
x + .13y = 63
The two equations are
x + y = 150
x + .13y = 63
Solving for x and y,
x = 50
y = 100
Therefore, you need to mix 50 mL of the 100% vinegar and 100 mL of the 13% vinegar.
Answer:
0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
Explanation:
Mass percentage of oxalic acid = 5.50%
This means that in 100 grams of solution there are 5.50 grams of oxalic acid.
Mass of solution , m = 100
Volume of the solution = V
Density of the solution = d = 1.024 g/mL
V = 97.66 mL = 0.09766 L
(1 mL = 0.001 L)
Moles of oxalic acid =
The molarity of the solution :
0.6257 M is the molarity of solution that is 5.50 percentage by mass oxalic acid.
answer=H+]=10-7
explain=the same way, a solution with a pH of 5 contains 10-5mol/l of hydrogen ions, a solution with a pH of 6 contains 10-6mol/l of hydrogen ions, while the solution with a pH of 7 contains 10-7mol/l of hydrogen ions