Answer:
18.3 kilopascals
Explanation:
We are given that the volume of this container is 0.0372 meters^3, that the mass of water is 4.65 grams, and that the temperature of this water vapor ( over time ) is 368 degrees Kelvins. This is a problem where the ideal gas law is an " ideal " application.
_______________________________________________________
First calculate the number of moles present in the water ( H2O ). Water has a mass of 18, so it should be that n, in the ideal gas law - PV = nRT, is equal to 4 / 18. It is the amount of the substance.
We now have enough information to solve for P in PV = nRT,
P( 0.0372 ) = 4 / 18( 8.314 )( 368 ),
P ≈ 18,276.9
Pressure ≈ 18.3 kilopascals
<u><em>Hope that helps!</em></u>
1) HOBr stands for hypobromous acid. On reacting with water, products formed are OBr- and H3O+. Following reaction occurs during this process.
<span> HOBr + H2O </span>⇄<span> OBr- + H3O+
2) HOBr is a weak acid and have a lower value of dissociation constant (Ka ~ </span><span>2.3 X 10^–9). Hence, </span><span> large number of undissociated HOBr molecules are left in solution, when the reaction is completed/reaches equilibrium.</span>
A cloud is formed because the water vapor gathers in groups
Answer:
7.28
Explanation:
-log(5.2x10^-8) = 7.28
- Hope that helped! Please let me know if you need further explanation.