Answer:
- Option A): <em>Due to the constraints upton the angular momentum quantum number, the subshell </em><u><em>2d</em></u><em> does not exist.</em>
Explanation:
The <em>angular momentum quantum number</em>, identified with the letter l (lowercase L), number is the second quantum number.
This number identifies the shape of the orbital or <em>kind of subshell</em>.
The possible values of the angular momentum quantum number, l, are constrained by the value of the principal quantum number n: l can take values from 0 to n - 1.
So, you can use this guide:
Principal quantum Angular momentum Shape of the orbital
number, n quantum number, l
1 0 s
2 0, 1 s, p
3 0, 1, 2 s, p, d
Hence,
- <u>the subshell 2d (n = 2, l = 2) is not feasible</u>.
- 2s (option B) is possible: n = 2, l = 0
- 2p (option C) is possible: n = 2, l = 1
Answer:
Nitrogen
Explanation: nitrogen is around 70% of the air hope this helps god bless
Answer:
%KCl = 7.05%
%Water = 92.95%
Explanation:
Step 1: Given data
- Mass of KCl (solute): 36 g
- Mass of water (solvent): 475 g
Step 2: Calculate the mass of the solution
The mass of the solution is equal to the sum of the masses of the solute and the solvent.
m = 36 g + 475 g = 511 g
Step 3: Calculate the mass percentage of the solution
We will use the following expression.
%Component = mComponent/mSolution × 100%
%KCl = 36 g/511 g × 100% = 7.05%
%Water = 475 g/511 g × 100% = 92.95%
The melting point of ice is 0 degrees Celcius, which means it exists as a liquid for any temperatures above 0 degrees. The melting point of salt is approximately 800 degrees Celcius, which is way greater than the melting point of ice. This means that for temperatures below 800 degrees, salt exists as a solid.
The temperature of the area where they were placed we can assume was somewhere between 0 and 800 degrees, greater than the melting point of ice but less than the melting point of salt. This why the ice melted but the salt did not.
I hope this helps!
Explanation:
The various functions of water in plants include: maintaining cell turgidity for structure and growth; transporting nutrients and organic compounds throughout the plant; comprising much of the living protoplasm in the cells; serving as a raw material for various chemical processes, including photosynthesis; and, through transpiration, buffering the plant against wide temperature fluctuations.