Answer : I hope this helps !
The Effort Force is the force applied to a machine. Work input is the work done on a machine. The work input of a machine is equal to the effort force times the distance over which the effort force is exerted.
Answer:
g = 1.25m/s²
Explanation:
Given the following data;
Mass = 5kg
Height = 6m
Gravitational potential energy = 24J
To find the acceleration due to gravity;
Potential energy can be defined as an energy possessed by an object or body due to its position.
Mathematically, potential energy is given by the formula;

Where,
P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
GPE = mgh
Substituting into the equation, we have;
24 = 5*6*g
24 = 30g
g = 30/24
g = 1.25m/s²
Therefore, the acceleration due to gravity on Planet X is 1.25m/s².
Answer:(a)360N,(b)171N,(c)2.702m
Explanation:
(a)Maximum Friction Force =
=360 N


(b)Moment about Ground Point




(c)

Here maximum friction force can be 360 N
Therefore 
Where x is the maximum distance moved by man along the ladder

740x=2000
x=2.702m
Answer:
6.54 × 10⁻⁵ Pa-s
Explanation:
Since the shear force, F = μAu/y where μ = viscosity of fluid between plates, A = area of plates, u = velocity of fluid = 0.6 m/s and y = separation of plates = 0.02 mm = 2 × 10⁻⁵ m
Since F = μAu/y
F/A = μu/y where F/A = force per unit area
Since we are given force per unit area, F/A = 1.962 N per unit area = 1.962 N/m²
So, μ = F/A ÷ u/y
substituting the values of the variables into the equation, we have
μ = F/A ÷ u/y
μ = 1.962 N/m² ÷ 0.6 m/s/2 × 10⁻⁵ m
μ = 1.962 N/m² ÷ 0.3 × 10⁵ /s
μ = 6.54 × 10⁻⁵ Ns/m²
μ = 6.54 × 10⁻⁵ Pa-s