4.) D
10.) C
12.) D
13.) D
14.) D
15.) D
C. both a and b
If a light bulb can last longer with the same amount of energy it is given, that means it can use less energy to do the same job compared to one that does not last longer with the same amount of energy it is given. It is much like how a more fuel efficient car will be able to go farther on the same tank of gas, but if you pair it with a car that doesn't have as great of an mpg, when they go the same distance, the car with the greater mpg spends less fuel.
If you don't have to use the energy when you aren't utilizing it, then you can conserve the energy for when you do need it.
Answer:
Option C.
2 Mg (s) + O₂(g) → 2MgO (s)
Explanation:
Two moles of magnesium solid react with one mol of oxygen gas to
form two moles of magnesium-oxide solid
2 Mg (s) + O₂(g) → 2MgO (s)
That's the reaction for the magnessium oxide's formation.
Be careful cause we do not say molecules, they are moles.
The stoichiometry indicates the number of moles that react and the moles which are produced.
It is a redox reaction, because the magnessium is oxidized and the oxygen is reduced. Both elements, changed the oxidation states.
<u>Answer:</u> The standard electrode potential of the cell is 4.53 V.
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, fluorine will undergo reduction reaction will get reduced.
Aluminium will undergo oxidation reaction and will get oxidized.
Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Hence, the standard electrode potential of the cell is 4.53 V.
Missing question: Express the salt concentration in kg/m³.
Answer is: the salt concentration is 9.8 kg/m³.
m(NaCl) = 9.8 g ÷ 1000 g/kg.
m(NaCl) = 0.0098 kg.
V(solution) = 1 L = 1 dm³.
V(solution) = 1 dm³ ÷ 1000 dm³/m³.
V(solution) = 0.001 m³.
d(solution) = m(NaCl) ÷ V(solution).
d(solution) = 0.0098 kg ÷ 0.001 m³.
d(solution) = 9.8 kg/m³.