Answer:
ΔT=-747,13°C
Explanation:
Sensible heat is<em> the amount of thermal energy that is required to change the temperature of an object</em>, the equation for calculating the heat change is given by:
Q=msΔT
where:
- Q, heat that has been absorbed or realeased by the substance [J]
- m, mass of the substance [g]
- s, specific heat capacity [J/g°C] (
- ΔT, changes in the substance temperature [°C]
To solve the problem, we clear ΔT of the equation and then replace our data:
Q=msΔT
ΔT=Q/ms
Δ
°C
<em>(Note that Q=-14900 J because there is a </em><u><em>LOST</em></u><em> of thermal energy)</em>
Thus, the change in temperature of the steel bar is -747,13°C, meaning that the temperature of the bar decreases.
Answer:
<h3>The answer is option B</h3>
Explanation:
To calculate the number of atoms we must first calculate the number of moles
Molar mass = mass / number of moles
number of moles = mass / Molar mass
Molar mass (K) = 39.10mole
mass = 2.10g
number of moles = 2.10/ 39.10
= 0.0537mol
After that we use the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10^23 entities
Number of K atoms is
N = 0.0537 × 6.02 × 10^13
<h3>N = 3.23×10^22 atoms of K</h3>
Hope this helps you.
<span>Let's </span>assume that water vapor has ideal gas
behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹) and T is temperature in Kelvin.<span>
<span>
</span>P = 1 atm = 101325 Pa (standard pressure)
V = 13.97 L = 13.97 x 10</span>⁻³ m³<span>
n = ?
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 0 °C = 273 K (standard temperature)
<span>
By substitution,
</span>101325 Pa x 13.97x 10</span>⁻³
m³ = n x 8.314 J mol⁻¹ K⁻¹ x 273 K<span>
n = 0.624 mol
<span>
Hence, the moles of water vapor at STP is 0.624 mol.
According to the </span></span>Avogadro's constant, 1 mole of substance has 6.022 × 10²³ particles.
<span>
Hence, number of atoms in water vapor = 0.624 mol x </span>6.022 × 10²³ mol⁻¹
<span> = 3.758 x 10</span>²³<span>
</span>
At room temperature, O2 is in gaseous state.
a gas has no definite volume or definite shape. It occupies volume of container and attains shape of container only.
Thus
It has no definite volume and takes the shape of its container.
Its particles move fast enough to overcome the attraction between them.: the gas molecules have minimum intermolecular interactions and have high kinetic energy.
It has more energy than it would at a cooler temperature: the kinetic energy of gas molecules increases with increase in temperature. Thus the energy increases with temperature and decreases with decrease in temperature.
Using the stoichiometry of the reaction and the information provided in the question, the mass of N2 used is 11.62 g.
<h3>Chemical reaction</h3>
The term chemical reaction refers to the combiantion of two or substances to yiled one or more products. The reaction equation in this case is N2 + O2 --->2NO.
Now;
Number of moles of NO = 25g/30 g/mol = 0.83 moles
1 mole of N2 yields 2 moles of NO
x moles of N2 yileds 0.83 moles of NO
x = 0.415 moles
Mass of N2 = 0.415 moles * 28 g/mol = 11.62 g
Learn more about stoichiometry:
brainly.com/question/12166462