Count the number of multiples of 3, 4, and 12 in the range 1-2005:
⌊2005/3⌋ ≈ ⌊668.333⌋ = 668
⌊2005/4⌋ = ⌊501.25⌋ = 501
⌊2005/12⌋ ≈ ⌊167.083⌋ = 167
(⌊<em>x</em>⌋ means the "floor" of <em>x</em>, i.e. the largest integer smaller than <em>x</em>, so ⌊<em>a</em>/<em>b</em>⌋ is what you get when you divide <em>a</em> by <em>b</em> and ignore the remainder)
Then using the inclusion/exclusion principle, there are
668 + 501 - 2•167 = 835
numbers that are multiples of 3 or 4 but not 12. We subtract the number multiples of 12 twice because the sets of multiples of 3 and 4 both contain multiples of 12. Subtracting once removes the multiples of 3 <em>and</em> 4 that occur twice. Subtracting again removes them altogether.
Answer:
Yes! The given quadrilateral represents Parallelogram.
Reason: The given quadrilateral has opposite sides congruent.
Step-by-step explanation:
Given the quadrilateral with the four vertices.
- Now in order to determine whether the given quadrilateral is a parallelogram or not, we need to check whether the opposite sides are congruent or not.
- It is clear that the given quadrilateral has opposite sides congruent.
Therefore, the given quadrilateral represents Parallelogram.
Hence,
Yes! The given quadrilateral represents Parallelogram.
Reason: The given quadrilateral has opposite sides congruent.
I believe it would be 5/9
The transformations that produce a congruent figure include rotations, translations, and reflections.
Let's say Alice is 4 feet tall and Bob is 6 feet tall. The ratio of their heights is the required Alice:Bob = 2:3. That means Bob is 3/2 = 1.5 times taller than Alice.