With that informatio you can:
1) Write the chemical equation
2) Balance the chemical equation
3) State the molar ratios
4) Predict if precipitation occurs.
I will do all four, for you:
1) Chemical equation:
mercury(I) nitrate potassium bromide mercury(I) bromide potassium nitrate
<span>Hg2(NO3)2 + KBr → Hg2Br2 + KNO<span>3
2) Balanced chemical equation
</span></span>
<span>Hg2(NO3)2 + 2KBr → Hg2Br2 + 2KNO<span>3
3) Molar ratios or proportions:
1 mol </span></span><span>Hg2(NO3)2 : 2 mol KBr : 1 mol Hg2Br2 : 2 mol KNO<span>3
4) Prediction of precipitation.
You can use the solubility rules or a table of solubilities. I found in a table of solutiblities that mercury(I) bromide is insoluble and potassium bromide is soluble, Then you can predict that the precipitation of mercury(I) bromide will occur.
</span></span>
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system mass cannot change quantity if it is not added or removed. Hence, the quantity of mass is "conserved" over time.
Answer:
The pressure increases when temperature increases
Explanation:
As the temperature increases, the particles move faster, and greater speeds. That means they have greater force when they collide with the walls of the container, so the pressure increases.
The answer is (a) 30g. Zinc = 30. 1 mole = 30 x 1 = 30g
Oxygen has a strong double bond which has more stability than the single co-ordinate bond in ozone, therefore more energy is required to break the O2 bonding than ozone, so the ozone molecule is more reactive than oxygen gas. ... The oxygen free radical contains two unpaired electrons in its valence shell.