Answer:

Explanation:
Since the <em>rate constant</em> has units of <em>s⁻¹</em>, you can tell that the order of the reaction is 1.
Hence, the rate law is:
![r=d[A]/dt=-k[A]](https://tex.z-dn.net/?f=r%3Dd%5BA%5D%2Fdt%3D-k%5BA%5D)
Solving that differential equation yields to the well known equation for the rates of a first order chemical reaction:
![[A]=[A]_0e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_0e%5E%7B-kt%7D)
You know [A]₀, k, and t, thus you can calculate [A].
![[A]=0.548M\times e^{-3.6\cdot 10^{-4}/s\times99.2s}](https://tex.z-dn.net/?f=%5BA%5D%3D0.548M%5Ctimes%20e%5E%7B-3.6%5Ccdot%2010%5E%7B-4%7D%2Fs%5Ctimes99.2s%7D)
![[A]=0.529M](https://tex.z-dn.net/?f=%5BA%5D%3D0.529M)
Complete question:
Write the condensed formula from left to right, starting with (CH3)x where x is a number.
See attached image for the structure formula of the compound
Answer:
(CH₃)₂CHC(CH₃)₃ named as 2,2,3-Trimethylbutane
Explanation:
If we number the longest chain of the carbon starting from the left, we will observe that there are four carbons in the straight chain as shown in the image.
Starting from first carbon from the left of the carbon chain, at carbon number number 2, there two alkyl group, that is two methyl (CH3 is two). Also at carbon number 3, there are three alkyl group, that is three methyl (CH3 is three).
The condensed formula will be written as;
(CH₃)₂CHC(CH₃)₃
This compound is named as 2,2,3-Trimethylbutane, an isomer of Heptane
Answer:
covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms
the sharing of electrons allows each atom to attain the equivalent of a full outer shell, corresponding to a stable electronic configuration.
Explanation: