Answer:
217 children and 481-217 = 264 adults
Step-by-step explanation:
Answer:
see the attachment
Step-by-step explanation:
We assume that the question is interested in the probability that a randomly chosen class is a Friday class with a lab experiment (2/15). That is somewhat different from the probability that a lab experiment is conducted on a Friday (2/3).
Based on our assumption, we want to create a simulation that includes a 1/5 chance of the day being a Friday, along with a 2/3 chance that the class has a lab experiment on whatever day it is.
That simulation can consist of choosing 1 of 5 differently-colored marbles, and rolling a 6-sided die with 2/3 of the numbers being designated as representing a lab-experiment day. (The marble must be replaced and the marbles stirred for the next trial.) For our purpose, we can designate the yellow marble as "Friday", and numbers greater than 2 as "lab-experiment".
The simulation of 70 different choices of a random class is shown in the attachment.
_____
<em>Comment on the question</em>
IMO, the use of <em>70 trials</em> is coincidentally the same number as the first <em>70 days</em> of school. The calendar is deterministic, so there will be exactly 14 Fridays in that period. If, in 70 draws, you get 16 yellow marbles, you cannot say, "the probability of a Friday is 16/70." You need to be very careful to properly state the question you're trying to answer.
11*13=143
11+13=24
The sum of the two consecutive odd integers is 24
The answer is: 10 x¹³ y¹⁰ .
__________________________________________________________
1x^8 * 2y^(10) * 5x^5 =
1* 2* 5 * x^8 * x^5 * y^(10) =
10 * x^(8+5) * y^(10) =
10 * x^(13) * y^(10) = 10 x^(13) y^10 ; write as:
_______________________________________________
10 x¹³ y¹<span>⁰ .
<span>______________________________________________________</span></span>
Answer:
14,000 decigrams
Step-by-step explanation:
Hope this helps
(nice porygon-z pfp lol)