1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
4 years ago
10

Give me the answer for 2 1/5 times 4

Mathematics
2 answers:
pav-90 [236]4 years ago
7 0
The answer for 2 1/5 times for total is 8.8
Korvikt [17]4 years ago
6 0
2 1/5* 4
= (11/5) * 4
= 44/5
= (40+ 4)/5
= 40/5+ 4/5
= 8+ 4/5
= 8 4/5

The final answer is 8 4/5~
You might be interested in
How do I solve this equation quick with an easy method?
Pani-rosa [81]

Answer:

4/(3(x-2))

Step-by-step explanation:

3x^2-21x+30=3(x^2-7x+10)=3(x-5)(x-2)

3x-15=3(x-5)

----------------------------

So the common denominator must be 3(x-5)(x-2)

2(x-2)=2x-4

Add the numerators,

(2x-16)+(2x-4)=4x-16-4=4x-20

-----------------

(4x-20)/[3(x-5)(x-2)]

simplify 4x-20 into 4(x-5)

cancel out the (x-5)'s for both the denominator and the numerator

4/[3(x-2)]

3 0
3 years ago
What is the answer to my question? No links please. Urgent.
babunello [35]

Answer:

57cm^3

i belive this is right.

6 0
3 years ago
Read 2 more answers
Can u help me with this question please
icang [17]
The answer is the top right one.

Each of the other answers is saying the same thing, just in different words, that the slope of the equation is 2. The top right is incorrect.
4 0
3 years ago
Lim n-> infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
The table shows a proportional relationship.
sergey [27]

.8 is the answer you add .8 to x

4 0
3 years ago
Other questions:
  • Bob and Nina make dog leashes. Bob can make 7 leashes in 2 hours and Nina can make 4 leashes in 1 hour. Enter an equation that c
    12·1 answer
  • A certain species of alligators is to be introducers into a swamp, and wildlife experts estimate the population will grow to P(t
    12·2 answers
  • Which expression is equivalent to cos 150°?
    10·1 answer
  • Which graph shows a function where f(2)=4 ?
    5·1 answer
  • A geometry class has a pizza party. There are 14 students that will have pizza. Each pizza has 8 slices. The teacher wants to bu
    12·1 answer
  • How do I solve these questions?
    6·1 answer
  • Is the equation parallel perpendicular or neither ?<br><br> y = 5/4 x+1 and y = 5/4 x-7
    6·1 answer
  • Jamir is training for a race and is running laps around a field. If the distance around the field is 250 yards, how many complet
    11·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    12·2 answers
  • Find the slope of the line through each pair of points (-17, 11) , (-12, 9) 
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!