Answer:atoms involved in reaction. Mass remains same in reaction
Explanation: hug would be fine!
Answer:
In chemistry and physics, a valence electron is an outer shell electron that is associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed; in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a
Explanation:
Answer:
2 moles
Explanation:
number of mole =mass /molar mass
mass=36
molar mass=(2*1)+16=18
therefore, no of mole =36÷18 =2
This problem is asking for an explanation of what happens when an ionic bond is formed. Although the choices are not given in the question, one can find them on the attached file and realize the answer is C "a less electronegative atom donates an electron to a more electronegative atom" according to:
<h3>Types of bonds:</h3><h3 />
In chemistry, the forces that hold atoms together are known as chemical bonds and act like connections for atoms to form compounds. There exist ionic and covalent bonds, so the formers occur when electrons are thoroughly donated from the least electronegative atom to the most electronegative one.
On the flip side, covalent bonds occur when the electrons are shared between the two or more of the atoms forming the compound. In such a way, one can discard choices A and B because they are more related to covalent bonds.
Therefore, one can select C "a less electronegative atom donates an electron to a more electronegative atom" as the correct answer, because not all the elements are able to donate more than one single electron, and the less its valency, the more ionic the compound turns out to be.
Learn more about types of bonds: brainly.com/question/792566
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>