Answer:
194.6 mL of SO₂
Explanation:
The reaction that takes place is:
P₄S₃ + 6O₂(g) → P₄O₁₀ + 3SO₂(g)
<u>To solve this problem we need to use PV=nRT</u>, so first let's convert the given units:
- 23.8 °C → 23.8 + 273.15 = 296.95 K
- 747 torr → 747/760 = 0.983 atm
We need to calculate V, so in order to do that we calculate n, using the mass of the reactant (P₄S₃):
0.576 g P₄S₃ *
= 7.85 * 10⁻³ mol SO₂ = n
PV=nRT
0.983 atm * V = 7.85 * 10⁻³ mol * 0.082 atm·L·mol⁻¹·K⁻¹ * 296.95 K
V = 0.1946 L
- Finally we convert L into mL:
0.1946 * 1000 = 194.6 mL
The rows in the top third - This group consists of elements like Sodium, Magnesium, Potassium and Calcium on the right and Chlorine, Carbon, Nitrogen and Oxygen on the left.
Sodium and Chlorine are components of salt, a very important compound of our blood, essential for transferring electrical signals from the brain to the rest of the body and vice versa. Calcium is the building block of our bones, while Magnesium and potassium ensure proper functioning of our organs.
Answer:
Option D = 0.2 Kj
Explanation:
Given data:
Mass of diethyl ether = 1.0 g
Hvap = 15.7 Kj / mol
Heat absorbed = ?
Solution:
Q = mass × Hvap / molar mass
Q = 1.0 g × 15.7 Kj / mol / 74.12 g/mol
Q = 15.7 Kj / 74.12
Q = 0.212 KJ
Whenever any substance goes under chemical change so any of the reaction will happen either both or multiple compounds will combine to produce combination reaction either one compound will decompose itself into 2 or more compounds or elements and last one is replacement reaction the either reaction is not even going to combination nor decomposition, So when a reaction like that happens it must replacement reaction.
Now the question is what's the condition required for it, so basically a chemical reaction when takes place it depends upon several factor on the basis of which we conclude products. The factors are Temperature,catalyst,reagents, either what is the mechanism of reaction, stability of reactants and stability of products and alot more.
During reaction sometimes gas forms and sometimes not yea and well that also depends on the chemical reactivity and stability of product sometimes product found itself most stable releasing the gas evolving so it's been done itself and sometimes we add catalyst and adjust the reaction to extract that gas and get desirable product manually.
I wrote all i know if sorry if this is not what you're looking for :(
Because they’re both made up of two substances that are not chemically combined