<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
Answer:
Explanation:
Given parameters:
Mass of CuCl₂ = 2.50g
Mass of Al = 0.50g
Unknown:
Number of moles of CuCl₂ and Al = ?
Solution:
To solve this problem, we must understand that the number of moles is a fundamental property used in stoichiometry calculations.
Number of moles = 
Molar mass of CuCl₂ = 63.6 + 2(35.5) = 134.5g/mole
Molar mass of Al = 26.98g/mole
Number of moles of CuCl₂ =
= 0.019moles
Number of moles of Al =
= 0.019moles
Answer:
The equilibrium between the two forms of the gas is disturbed at high temperatures.
The option that distinguishes a nuclear reaction from a chemical reaction is D. there is a change in the nucleus.
During a nuclear reaction, two light nuclei combine in order to create a new, heavier one which is different than those two original ones and has additional particles that it didn't have originally. This is what makes the difference between these two reactions.
Answer:
Gold
Explanation:
Gold(I) chloride is a compound of gold and chlorine with the chemical formula AuCl