Let us suppose, we pour x glass of water.
The given jug is of 6 liters. And the glass of water was seven- eighths of a liter. Hence, we have the below equation

Now, in order to solve for x, we will divide 6 with 7/8. So, we have to divide.

Hence, we can pour 7 glass of water. But the 7th glass is not full of water. It is partially full.
Given:
assessment rate = 51%
tax rate = 53.26 per 1,000
53.26 / 1000 = 0.05326
0.05326 x 100% = 5.326%
Effective tax rate = assessment rate * tax rate
ETR = 51% * 5.326%
ETR = 2.72%
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with

Answer: 14.6
Step-by-step explanation:
I made a square around the triangle which I then counted the squares, found the Pythagorean theorem, and then added the missing sides together
The answer is y=(1/2)x -5
You are given the slope and a core donate pair so you plug them in to the equation. 2=x. -4=y. And (1/2)= m
Then work out like a one step equation