The pressure will increase with decreasing volume. if they remain constant, that is.
Answer:
Substitution and Na(No3) + Fe
Explanation:
The nulear charge is the number of protons.
As the number of protons increases, the nuclear charge grows ant thhe pulling electrostatic force between them and electrons also grows, given that the electrostatic force is proportional to the magnitude of the charges.
As the number of electrons grows, they occupy outer shelss (farther from the nucleus). And the outer electrons will feel not only the atraction of the protons from the nucleus, but the repulsion of the inner electrons.
Then, we see that the increase of nuclear charge is opposed by the increase of core electrons, and the outer (valence) electrons are not so tied to the nucleus as the core electrons are.
This is called shielding effect. A way to quantify the shielding effect is through the effective nuclear charge which is the number of protons (Z) less the number of core electrons.
The more the number of core shells the greater the shielding effect experience by electros in the outermost shells.
The shielding effect, explains why the valence eletrons are more easily removed from the atom than core electrons, and also explains some trends of the periodic table: variationof the size of the atoms in a row, the greater the shielding efect, the less the atraction force felt by the outermos electron, the farther they are and the larger the atom.
The ansewer is Boyle’s law
Answer:
1. HBr>HCl> H2S >BH3
2.K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S
Explanation:
As one goes down a row in the Periodic Table the properties that determine the acid strength can be observed.
The atoms get larger in radius meaning that in strength, the strength of the bonds get weaker, conversely meaning that the acids get stronger.
For the halogen-containing acids above following the rows and periods, HBr has the strongest bond and is the strongest acid and others follow in this order.
HBr>HCl> H2S >BH3
Acid Dissociation Constant provides us with information known as the ionization constant which comes in handy to measure the acid's strength. The meaning of the proportions are thus, the higher the Ka value, the stronger the acid i.e. it liberates more number of hydrogen ions per mole of acid in solution.
In solution strong acids completely dissociate hence, the value of dissociation constant of strong acids is very high.
Following the cues above on Ka;
K_a1 very large — H2SO4
K_a1= 1.7 x 10^−2 — H2SO3
K_a1 = 1.7 x 10^−7 — H2S