Answer:
Element Symbol Atomic weight Atoms Mass percent
Carbon C 12.0107 1 23.7894
Hydrogen H 1.00794 3 5.9892
Chlorine Cl 35.453 1 70.2213
Explanation:
Answer:
Mass of KNO3= 10g
Molar mass of KNO3 = 101.1032g/mol
Volume = 250ml = 0.25L
No of mole on of KNO3 = mass of KNO3/Molar mass of KNO3
no of mole of KNO3 = 10/101.1032
No of mole of KNO3 = 0.09891
molarity of KNO3 = no of mole of KNO3/Vol (L)
Molarity = 0.09891/0.25 = 0.3956M
Molarity of KNO3 = 0.3956M
Scientists use a Graduated Cylinder
Answer:
A. 3 x 10-12
Explanation:
Generally, the parts-per notation is used to represent very small concentration without any specific unit.
Parts per million is notated as 
Parts per billion is notated as 
Parts per trillion is notated as 
Hence, 3 parts per trillion will be written as 3 x 
The correct option is A.
The chemical reaction equation for this is
XeF6 + 3H2 ---> Xe + 6HF
Assuming gas behaves ideally, we use the ideal gas formula to solve for number of moles H2 with T = 318.15K (45C), P = 6.46 atm, V = 0.579L. Then we use the gas constant R = 0.08206 L atm K-1 mol-1.
we get n = 0.1433 moles H2
to get the mass of XeF6,
we divide 0.1433 moles H2 by 3 since 1 mole XeF6 needs 3 moles H2 to react then multiply by the molecular weight of XeF6 which is 245.28 g/mole XeF6.
0.1433 moles H2 x

x

= 11.71 g XeF6
Therefore, 11.71 g of XeF6 is needed to completely react with 0.579 L of Hydrogen gas at 45 degrees Celcius and 6.46 atm.