2NaCN(s) + H₂SO₄(aq) --> Na₂SO₄(aq) + 2HCN(g)
The molar ratio between NaCN : HCN is 2:2 or 1:1
Mass of HCN = 16.7 g
Molar mass of HCN = 1 + 12 + 14 = 27 g/mol
Molar mass of NaCN = 49 g/mol
Therefore, the mass of NaCN is
16.7 g of HCN x 49 g/mol of NaCN / 27 g/mol of HCN = 30.3 grams of NaCN
Therefore, 30.3 grams of NaCN gives the lethal dose in the room.
In keeping with the general trends, K-Br will have the smallest bond energy. The bond energy refers to the energy that keeps the atoms in a bond together.
<h3>What is bond energy?</h3>
Bond energy is the energy that is required to hold atoms together in a bond. This energy must also be supplied when the atoms are to be separated.
We have the bond energies of each of the bons in the question, we have to note that the the smallest value of bond energy is Na-Br hence in keeping with the general trends, K-Br will have the smallest bond energy.
Learn more about bond energies: brainly.com/question/14842720?
Answer:
Atomic mass of E is 128.24
Explanation:
- The percentage composition by mass of an element in a compound is given by dividing the mass of the element by the total mass of the compound and expressing it as a percentage.
- In this case; the compound Bi₂E₃
Percentage composition of bismuth = 52.07%
Percentage composition of E = 47.93%
Mass Bismuth in the compound is (2×208.9804) = 417.96 g
Therefore,
To calculate the atomic mass of E
52.07% = 417.96 g
47.93% = ?
= (47.93 × 417.96 ) ÷ 52.07 %
= 384.729
E₃ = 384.729
Therefore; E = 384.729 ÷ 3
= 128.24
The atomic mass of E is 128.24
The terms of a equation, the momentum of an object is equal to the mass of the object times the velocity of the object. where m is the mass and v is the velocity
Answer: 10 electrons
Explanation:
N represents Nitrogen. Nitrogen has an atomic number of 7, this means in ground state it has 7 electrons also.
But N-3, means Nitrogen has gained 3 more electrons. So, we have 10 electrons