Answer:
Newton's Second Law
Explanation:
Newton's second law basically states that the acceleration of a body which is produced by a net force is directly proportional to the magnitude of net force applied in the same direction.
This tells us that
F is directly proportional to a
⇒ F= ma
So we can also state from the above equation, that when we have more mass, we need more net force to accelerate it. Here, we are keeping the acceleration constant so we can surely say that force and mass varies directly.
Therefore, we have made good use of Newton's Second Law of motion to arrive at this conclusion.
A good reason for a desert fox to show this pattern of behavior because hunting at night allows the fox to use its night vision.
<h3>What is Hunting?</h3>
Thi9s is commonly practised by predators such as fox in which they capture and kill other animals for food.
The fox has a good night vision which makes it able to hunt for animals during the night also. This is why option C is chosen as the most appropriate choice.
Read more about Hunting here brainly.com/question/81175
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
The reaction between hydrogen and oxygen to form water is given as:

The balanced reaction is:

According to the balanced reaction,
4 g of hydrogen (
) reacts with 32 g of oxygen (
).
So, oxygen reacted with 29.4 g of hydrogen is:

Hence, the mass of oxygen that is reacted with 29.4 g of hydrogen is 235.2 g.