2x+4 is the length of one side
1000 times cause its the value of the number
C. Both options A and B will allow him to meet his goal.
Looking at Drake's situation after 4 weeks, he only has $470 saved. By
his original plan, he should have had $500 saved. So he's $30 short of
his goal and has 2 weeks until his originally planned class. If he goes
with option A and takes the later class, he will save an additional $125
which is more than enough to make up the $30 short fall. So option A
will work for him to save enough money for his class. With option B, he
will save $140 for the last 2 weeks of his plan giving him a savings of
$280 for the last 2 weeks. Adding the $470 he's already saved will give
him a total savings of $470 + $280 = $750 which is enough for him to
attend his class. So option B will also allow Drake to attend his
desired class. Both options A and B allow him to meet his goal. Hence,
the answer is "c".
<u>Answers:</u>
These are the three major and pure mathematical problems that are unsolved when it comes to large numbers.
The Kissing Number Problem: It is a sphere packing problem that includes spheres. Group spheres are packed in space or region has kissing numbers. The kissing numbers are the number of spheres touched by a sphere.
The Unknotting Problem: It the algorithmic recognition of the unknot that can be achieved from a knot. It defined the algorithm that can be used between the unknot and knot representation of a closely looped rope.
The Large Cardinal Project: it says that infinite sets come in different sizes and they are represented with Hebrew letter aleph. Also, these sets are named based on their sizes. Naming starts from small-0 and further, prefixed aleph before them. eg: aleph-zero.
Given:
unit rate: 20km/h
Speed = distance / time
20kmh = 30km / time
time = 20kmh / 30km
time = 2/3 hrs or 40 minutes
2/3 hrs * 60mins/hr = (2*60)/3 = 120/3 = 40 minutes