To solve the given equation, you would need to multiply t by both terms inside the parenthesis.
The equation would be D. (t*14) - (t*5)
3 is less than or equal to x-9 is less than or equal to.
3<= x-9<=8
<= these mean less than or equal to.
hope I helped you!
Since 57x17=969 I did 969-942 and got 27 so there is 16 full rows and then 27 left over so that means it won’t be a full row but 27 extra seats will be filled. (If your wondering where the 17 came from that’s how many rows can be made that’s over 942 because if I did 57x16 it would equal 912 and I would not have had a full row of chairs)
Let's begin by listing the first few multiples of 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 38, 40, 44. So, between 1 and 37 there are 9 such multiples: {4, 8, 12, 16, 20, 24, 28, 32, 36}. Note that 4 divided into 36 is 9.
Let's experiment by modifying the given problem a bit, for the purpose of discovering any pattern that may exist:
<span>How many multiples of 4 are there in {n; 37< n <101}? We could list and then count them: {40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100}; there are 16 such multiples in that particular interval. Try subtracting 40 from 100; we get 60. Dividing 60 by 4, we get 15, which is 1 less than 16. So it seems that if we subtract 40 from 1000 and divide the result by 4, and then add 1, we get the number of multiples of 4 between 37 and 1001:
1000
-40
-------
960
Dividing this by 4, we get 240. Adding 1, we get 241.
Finally, subtract 9 from 241: We get 232.
There are 232 multiples of 4 between 37 and 1001.
Can you think of a more straightforward method of determining this number? </span>