Answer:
Bonding Order = number of bonding electrons – number of antibonding electrons/2.
So for CO2, there is a total of 16 electrons, 8 of which are antibonding electrons.
So 16 – 8 = 8; divided by 2 = 4. So, 4 is the bonding order of CO2. The molecular structure of CO2 looks like this:
..~-~~..
O=C=O
..~-~~..
Answer:
1. negative
2. positive
3. neutral
Explanation:
Ok so it looks like they are asking for the charge (positive, negative, or neutral) of each thing
So for 1, it would be negative, because it's pointing to an electron. Electrons always have a negative charge.
So for 2, it would be positive, because it's pointing to a proton. Protons always have a positive charge
So for 3, it would be neutral, because it's pointing to a neutron. Neutrons always have a neutral charge.
Answer:
The correct answer to the following question will be "Particles".
Explanation:
- A particle seems to be a little component of something, it's little. When you're talking about a subatomic particle, that would be a structured user likely won't see because it's quite unbelievably thin, but it has a tiny mass as well as structural integrity. Such particles seem to be tinier than that of the particles or atoms.
- Such that the light which shines on the bit of metal could dissipate electrons, the particles seem to be more compatible with the light.
Answer:
3.49 g
Explanation:
The mass is the product of volume and density:
(8.96 g/cm³)(0.39 cm³) ≈ 3.49 g
The mass of a pure-copper penny would be 3.49 g.
Answer:

Explanation:
The Rydberg equation gives the wavelength λ for the transitions:

where
R= the Rydberg constant (1.0974 ×10⁷ m⁻¹) and

Data:

λ = 657 nm
Calculation:
