Answer:
1
Explanation:
outershell atoms of an element are also known as valency of that element
so the valency and number of elctron in the outershell of a sodium atom is +1.
hope this will help
mark me as brilliant
I can't answer this question without knowing what the specific heat capacity of the calorimeter is. Luckily, I found a similar problem from another website which is shown in the attached picture.
Q = nCpΔT
Q = (1.14 g)(1 mol/114 g)(6.97 kJ/kmol·°C)(10°C)(1000 mol/1 kmol)
<em>Q = +6970 kJ</em>
Answer: 2.58 days
Explanation:
Expression for rate law for first order kinetics is given by:
where,
k = rate constant = ?
t = age of sample = 6 days
a = initial amount of the reactant = 1 g
a - x = amount left after decay process
= 0.2 g
a) to find the rate constant
b) for completion of half life:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
The half life is 2.58 days
The molar mass of CO2 can be calculated as follows;
CO2 — 12 + (16x2) = 12+ 32 = 44 g
Therefore molar mass of CO2 is 44 g/mol
In 44 g of CO2 there’s 1 mol of CO2
Then 1 g of CO2 there’s 1/44 mol of CO2
Therefore in 78.3 g of CO2 there’s — 1/44 x 78.3 =1.78 mol of CO2
The value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
Aa we know that, 125mL of 0.06M Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl.
Given, T = 25°C.
<h3>Chemical equation:</h3>
Pb(NO3)2 + NaCl ---- NaNO3 + PbCl2
PbCl2 in aqueous solution split into following ions
PbCl2 ------ Pb(+2) + 2Cl-
Q = [Pb(+2)] [Cl-]^2
The Concentration of Pb(+2) ions and Cl- ions can be calculated as
[Pb(+2)] = 0.06 × 125/200
= 0.0375
[Cl-] = 0.02 × 75/200
= 0.0075
By substituting all the values, we get
[0.0375] [0.0075]^2
= 2.11 × 10^(-6).
Thus, we calculated that the value of Q for 125.0 ml of 0.0500 m Pb(NO3)2 is mixed with 75.0 ml of 0.0200 m NaCl at 25°C is 2.11 × 10^(-6).
learn more about Ions:
brainly.com/question/13692734
#SPJ4