Answer:
Step-by-step explanation:
It maybe will be ![\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}](https://tex.z-dn.net/?f=%5Cneq%20x%5E%7B2%7D%20%5Cleq%20%5C%5C%20%5C%5C%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Csqrt%7Bx%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Calpha%20%5Cbeta%20x_%7B123%7D%20%5C%5C%20x%5E%7B2%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D)
In geometry, a hexagonal pyramid is a pyramid that has a hexagonal bases which are erected six triangular faces.
The complete question in the attached figure
Let
Z---------------- > number of zacks stamps collections <span>for a stamp show
</span>T---------------- > number of teri's stamps collections <span>for a stamp show
</span>P--------------- > number of pacos stamps collections for a stamp show
we know that
Z=(3/10)*30-----------> Z=9
T=(5/6)*18------------ > T=15
P=(3/8)*24------------->P=9
the answer is
number of zacks stamps collections for a stamp show was 9
number of teri's stamps collections for a stamp show was 15
number of pacos stamps collections <span>for a stamp show </span>was 9
In their display were 33 stamps
The answer is -4,0 4,8 because u would solve for one variable in one of the equations and then substitute the result into the other
4 because that is what's multiplied throughout