Let's start by writing a system of linear equations:
c -> cookies
cb -> candy bars
(You can use any abbreviations to your preference)
Abby:
4 cookies
3 candy bars
$10.25 per bag
The equation would be:
4c+ 3cb = $10.25
Marissa:
2 cookies
7 candy bars
$14.75 per bag
The equation would be:
2c + 7cb = $14.75
So our linear equation system would be:
<span>4c+ 3cb = $10.25
</span><span>2c + 7cb = $14.75
I would try to get rid of one variable so I can solve for the other variable. In this case, it is easier to get rid of c since I can multiply the second equations by 2. Then it would subtract the two equations.
(2c + 7cb = $14.75) 2 = 4c + 14 cb = $29.50
4c + 3cb = $10.25
- 4c+14 cb = $29.50 (4c would get canceled.)
---------------------------------
-11 cb = - $19.25 (Divide by -11 to solve for cb)
</span> --------- -------------
-11 -11
cb = $1.75
Now we know cb (candy bar) cost, we would substitute this value into cb into one of the equations. It doesn't matter which equation you put it in. I will substitute it in the first equations.
4c + 3 (1.75) = $10.25
4c + 5.25 = $10.25 (Multiply 3 by 1.75)
-5.25 -5.25 (Subtract 5.25 on both sides)
4c = 5 (Divide by 4 on both sides to get c)
---- ---
4 4
c= 1.25
Check the work:
4(1.25) + 3(1.75)
= $10.25
2(1.25) + 7(1.75)
= $14.75
Total cost:
cookies = $1.25
candy bars = $ 1.75
Hope this helps! :)
The solution of the system of equations is (-3 , -2)
Step-by-step explanation:
Steps for Using Linear Combinations Method)
- Arrange the equations with like terms in columns
- Analyze the coefficients of x or y
- Add the equations and solve for the remaining variable
- Substitute the value into either equation and solve
∵ 3 x - 8 y = 7 ⇒ (1)
∵ x + 2 y = -7 ⇒ (2)
- Multiply equation (2) by 4 to make the coefficients of y are equal in
magnitude and different in sign
∴ 4 x + 8 y = -28 ⇒ (3)
Add equations (1) and (3)
∵ 3 x - 8 y = 7 ⇒ (1)
∵ 4 x + 8 y = -28 ⇒ (3)
∴ 7 x = -21
- Divide both sides by 7
∴ x = -3
Substitute the value of x in equation (2) to find y
∵ x + 2 y = -7 ⇒ (2)
∵ x = -3
∴ -3 + 2 y = -7
- Add 3 to both sides
∴ 2 y = -4
- Divide both sides by 2
∴ y = -2
The solution of the system of equations is (-3 , -2)
Learn more:
You can learn more about the system of the linear equations in brainly.com/question/13168205
#LearnwithBrainly
All are relations except for relation 3
Answer:
Please read the answer below.
Step-by-step explanation:
1. Australia:
75 * 1.87 =140 Australian dollars
2. Brazil:
75 * 2.32 = 174 Reals
3. Britain:
75 * 0.69 = 52 Pounds
4. Canada:
75 * 1.60 = 120 Canadian dollars
5. China:
75 * 8.28 = 621 Yuan
6. Denmark:
75 * 8.43 = 632 Kroner
7. Japan:
75 * 131.55 = 9,866 Yen
8. Mexico:
75 * 9.19 = 689 Mexican pesos
9. South Africa:
75 * 11.9 = 893 Rands
10. Sweden:
75 * 10.61 = 796 Kronor
11. Switzerland:
75 * 1.68 = 126 Francs
12. Thailand:
75 * 44.18 = 3,314 Baht
All currencies rounded to the next integer.
Note: Same answer to question 14454918, answered by me today.
The 4th term is 135
n-1
you get it by using the formula Tn= ar <span />