Answer:
107.8682 u
Explanation:
Well Silver has an atomic mass of aproximately 107.9. 1 mole of silver atoms = 107.9g and there are 6.02x10^23 atoms in one mole. Therefore to find mass of one atom you should divide the mass by Avodgadro's constant to find the mass of one atom because they all have an even distribution of mass.
The average atomic mass of the element takes the variations of the number of neutrons into account, and tells you the average mass per atom in a typical sample of that element. For example, the element silver (Ag) has two naturally occurring isotopes: Ag-107 and Ag-109 (or 107Ag and 109Ag).
Answer:
All molecules of a compound have the same properties. The chemical properties of any individual compound would not change. The molecule is one of the smallest particles in any element that has the chemical properties of that element. Molecules are made of atoms.
Answer:
Iron Oxide (Fe2O3) also known as rust is also an ionic bond, it has metallic compound Iron (Fe) which contains positively charged cations and it has nonmetallic compound Oxygen (O) which contains negatively charged anions.
Explanation:
i hope it help
You're off to a good start, now find the mass of H2O and put it under I mol,
then multiply 1 mol over the mass of H2O by 215 grams
Answer:
0.1440M
Explanation:
Let''s bring out the parameters we were given;
Rate constant = 8.74 x 10^-4s^-1
Initial Concentration [A]o = 0.330M
Final concentration [A]= ?
Time = 800s
The reaction is a first order reaction, due to the unit of the rate constant. In first order reactions, the reaction rate is directly proportional to the reactant concentration and the units of first order rate constants are 1/sec.
Formular relating these parameters is given as;
ln[A] = ln[A]o − kt
Making [A] subject of interest, we have;
ln[A] = ln[A]o − kt
ln[A] = ln(0.330) - ( 8.74 x 10^-4 * 800)
In[A] = - 1.1086 - (6992 x 10^-4)
ln[A] = -1.8079
[A] = 0.1440M