Explanation:
The given data is as follows.
= 286 kJ = 
= 286000 J
,

Hence, formula to calculate entropy change of the reaction is as follows.

= ![[(\frac{1}{2} \times S_{O_{2}}) - (1 \times S_{H_{2}})] - [1 \times S_{H_{2}O}]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20S_%7BO_%7B2%7D%7D%29%20-%20%281%20%5Ctimes%20S_%7BH_%7B2%7D%7D%29%5D%20-%20%5B1%20%5Ctimes%20S_%7BH_%7B2%7DO%7D%5D)
= ![[(\frac{1}{2} \times 205) + (1 \times 131)] - [(1 \times 70)]](https://tex.z-dn.net/?f=%5B%28%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20205%29%20%2B%20%281%20%5Ctimes%20131%29%5D%20-%20%5B%281%20%5Ctimes%2070%29%5D)
= 163.5 J/K
Therefore, formula to calculate electric work energy required is as follows.
= 
= 237.277 kJ
Thus, we can conclude that the electrical work required for given situation is 237.277 kJ.
Answer:
m = 0.659 ounce
Explanation:
It is given that,
The thickness of a Teflon coating is, d = 1 mm
Area of the coating, A = 36 inch²
The density of Teflon, d = 0.805 g/mL
We need to find ounces of Teflon are needed.
Firstly, find the volume of the Teflon needed,
1 inch² = 6.4516 cm²
36 inch² = 232.258 cm²
Density,

V is volume of the Teflon needed, V = Ad
So,

Also, 1 gram = 0.035274 ounce
18.69 gram = 0.659 ounce
So, 0.659 ounces of Teflon are needed.
Answer:
Cohesive forces are greater than adhesive forces
Step-by-step explanation:
The attractive forces between water molecules and the wax on a freshly-waxed car (adhesive forces) are quite weak.
However, there are strong attractive forces (cohesive forces) between water molecules.
The water molecules are only weakly attracted to the wax, so the cohesive forces pull the water molecules together to form beads
.