Answer:
Mass = 88.12 g
Explanation:
Given data:
Mass of iron oxide = 126 g
Mass of iron formed = ?
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Number of moles of iron oxide:
Number of moles = mass/molar mass
Number of moles = 126 g/ 159.69 g/mol
Number of moles = 0.789 mol
Now we will compare the moles of iron with iron oxide.
Fe₂O₃ : Fe
1 : 2
0.789 : 2/1×0.789 = 1.578 mol
Mass of iron:
Mass = number of moles ×molar mass
Mass = 1.578 mol × 55.84 g/mol
Mass = 88.12 g
i believe the answer is...
Atoms of isotopes of an element have different numbers of protons.
Answer:
(R)-but-3-en-2-ylbenzene
Explanation:
In this reaction, we have a very <u>strong base</u> (<em>sodium ethoxide</em>). This base, will remove a hydrogen producing a double bond. We know that the reaction occurs through an <u>E2 mechanism</u>, therefore, the hydrogen that is removed must have an <u>angle of 180º</u> with respect to the leaving group (the "OH"). This is known as the <u>anti-periplanar configuration</u>.
The hydrogen that has this configuration is the one that placed with the <u>dashed bond</u> (<em>red hydrogen</em>). In such a way, that the base will remove this hydrogen, the "OH" will leave the molecule and a double bond will be formed between the methyl and the carbon that was previously attached to the "OH", producing the molecule (R) -but-3- en-2-ylbenzene.
See figure 1
I hope it helps!
Water has a higher boiling point than Carbon Dioxide. Because Carbon Dioxide is a gas at room temperature, while Water is a liquid at room temperature.