Answer:
according to the equation it is 158.330917...
Step-by-step explanation:
put w as 64 and solve for t
The only numbers I could think of would be 1, 2, and 4 because 4 is greater than 3 (2+1) and four times greater than 1 (2-1)
Given:
The graph of a proportional relationship.
To find:
The constant of proportionality, the value of y when x is 24 and the value of x when y is 108.
Solution:
If y is directly proportional to x, then

...(i)
Where, k is the constant of proportionality.
The graph of proportional relationship passes through the point (5,15).
Substituting x=5 and y=15 in (i), we get



Therefore, the constant of proportionality is 3.
Substituting k=3 in (i) to get the equation of the proportional relationship.
...(ii)
Substituting x=24 in (ii), we get
Therefore, the value of y is 72 when x is 24.
Substituting y=108 in (ii), we get
Therefore, the value of x is 36 when y is 108.
Answer
a. 28˚
b. 76˚
c. 104˚
d. 56˚
Step-by-step explanation
Given,
∠BCE=28° ∠ACD=31° & line AB=AC .
According To the Question,
- a. the angle between a chord and a tangent through one of the end points of the chord is equal to the angle in the alternate segment.(Alternate Segment Theorem) Thus, ∠BAC=28°
- b. We Know The Sum Of All Angles in a triangle is 180˚, 180°-∠CAB(28°)=152° and ΔABC is an isosceles triangle, So 152°/2=76˚
thus , ∠ABC=76° .
- c. We know the Sum of all angles in a triangle is 180° and opposite angles in a cyclic quadrilateral(ABCD) add up to 180˚,
Thus, ∠ACD + ∠ACB = 31° + 76° ⇔ 107°
Now, ∠DCB + ∠DAB = 180°(Cyclic Quadrilateral opposite angle)
∠DAB = 180° - 107° ⇔ 73°
& We Know, ∠DAC+∠CAB=∠DAB ⇔ ∠DAC = 73° - 28° ⇔ 45°
Now, In Triangle ADC Sum of angles in a triangle is 180°
∠ADC = 180° - (31° + 45°) ⇔ 104˚
- d. ∠COB = 28°×2 ⇔ 56˚ , because With the Same Arc(CB) The Angle at circumference are half of the angle at the centre
For Diagram, Please Find in Attachment
He just switched sides of the variables and numbers. Instead if adding the opposite.