Answer:
I = 18 x 10⁻⁹ A = 18 nA
Explanation:
The current is defined as the flow of charge per unit time. Therefore,
I = q/t
where,
I = Average Current passing through nerve cell
q = Total flow of charges through nerve cell
t = time period of flow of charges
Here, in our case:
I = ?
q = (9 pC)(1 x 10⁻¹² C/1 pC) = 9 x 10⁻¹² C
t = (0.5 ms)(1 x 10⁻³ s/1 ms) = 5 x 10⁻⁴ s
Therefore,
I = (9 x 10⁻¹² C)/(5 x 10⁻⁴ s)
<u>I = 18 x 10⁻⁹ A = 18 nA</u>
The correct option is option B that wind resistance increases dramatically.
Explanation:
When the speed of an object increases resistance increases drastically because the object pushing through air has obtained a high speed but the air is unable to move out of the way so fast so show it tends to get compressed and oppose the moving object and the object names to put more pressure because some of the pressure goes into cutting air and moving through it.
Hey hey bro I’m gonna is your birthday and you have your a
Answer:
The amplitude of vibration of string will increase due to which loudness of sound will increase
Explanation:
As we know that the guitar is based on the principle of Resonance. When string of the guitar vibrates at a given frequency then the sound produced in the hollow part of the guitar will also be at same frequency.
This is known as resonance condition, so guitar will produce same frequency sound as that of frequency of string.
Now if the string is plucked with increasing level of force then it will increase the amplitude of vibrations of the string due to which the sound produced in the guitar will also be of same level.
So here we can say that amplitude and intensity of sound related as

so on increasing amplitude the intensity will increase and hence it will produce loud sound
Newton's second law of motion states that the force is equal to the product of the mass and acceleration. It can mathematically be expressed as,
F = m x a
When this equation is transformed to solve for acceleration, this becomes,
a = F / m
The equation suggests that for an object to move, force has to be exerted.