Explanation:
It is given that,
Speed of the ball, v = 10 m/s
Initial position of ball above ground, h = 20 m
(a) Let H is the maximum height reached by the ball. It can be calculated using the conservation of energy as :


h' = 5.1 m
The maximum height above ground,
H = 5.1 + 20
H = 25.1 meters
So, the maximum height reached by the ball is 25.1 meters.
(b) The ball's speed as it passes the window on its way down is same as the initial speed i.e. 10 m/s.
Hence, this is the required solution.
Answer:
10⁴¹ s quark top lives have been in the history of the universe.
Explanation:
You need to determine how many quark top lives there have been in the history of the universe, that is, what is the age of the universe divided by the lifetime of a top quark. Expressed in a formula, this is:

Yo know that the "Age of the universe" is 100,000,000,000,000,000 which can also be expressed as 10¹⁷ s
.
You also know that the "Lifetime of a top quark" is 0.000000000000000000000001 which can also be expressed as 10⁻²⁴ s.
Then 
Recalling that the result of dividing two powers of the same base is another power with the same base where the exponent is the subtraction of the initial exponents, it is possible to calculate this division as follows:


<u><em>t=10⁴¹ s</em></u>
So <u><em>10⁴¹ s quark top lives have been in the history of the universe.</em></u>
The box stopped moving because there was a negative acceleration in the x direction caused by friction.
To find the average speed, simply divide the displacement by time: 10 / 2 = 5 m/s
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.
A vertical polarizing filter is used on the lens of a camera, they block out the light that is horizontally polarized, so they allow all of the vertically polarized<span> light to pass through.</span>