Answer:
An earthquake is a sudden shaking movement of the surface of the earth. It is known as a quake, tremblor or tremor. Earthquakes can range in size from those that are so weak that they cannot be felt to those violent enough to toss people around and destroy whole cities. ... An earthquake is measured on Richter's scale.
<h2><u>
PLEASE MARK ME BRAINLIEST, PLEASE</u></h2>
After finding acceleration, it is found that 0.02 N of force is acting on the marble
<h3>
What is Force ?</h3>
Force can simply be defined as a pull or push. It is the product of mass and acceleration of the object. It is a vector quantity and it is measured in Newton.
Given that a steel marble with 0.05 kg of mass starts from rest and rolls down a ramp. It travels 0.25 m in 1.2 seconds.
The parameters to consider are;
Before we find the force acting on the marble, let us first find the acceleration by using the formula: s = ut + 1/2at²
Substitute all the parameters into the formula
0.25 = 0 + 1/2 × a × 1.2²
0.25 = 1/2 × a × 1.44
0.25 = 0.72a
a = 0.25/0.72
a = 0.35 m/s²
The force acting on the marble will be ;
F = ma
F = 0.05 × 0.35
F = 0.017
F = 0.02 N
Therefore, the force acting on the marble is 0.02 N
Learn more about Force here: brainly.com/question/388851
#SPJ1
Answer:
Spring's displacement, x = -0.04 meters.
Explanation:
Let the spring's displacement be x.
Given the following data;
Mass of each shrew, m = 2.0 g to kilograms = 2/1000 = 0.002 kg
Number of shrews, n = 49
Spring constant, k = 24 N/m
We know that acceleration due to gravity, g is equal to 9.8 m/s².
To find the spring's displacement;
At equilibrium position:
Fnet = Felastic + Fg = 0
But, Felastic = -kx
Total mass, Mt = nm
Fg = -Mt = -nmg
-kx -nmg = 0
Rearranging, we have;
kx = -nmg
Making x the subject of formula, we have;

Substituting into the formula, we have;


x = -0.04 m
Therefore, the spring's displacement is -0.04 meters.
Answer:

Explanation:
Let the charge on the ball bearing is q.
charge on glass bead, Q = 20 nC = 20 x 10^-9 C
Force between them, F = 0.018 N
Distance between them, d = 1 cm = 0.01 m
By use of Coulomb's law in electrostatics

By substituting the values


Thus, the charge on the ball bearing is 