1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
7

The force between two charges is 1000 N. One has a charge of 2.0 x 10-5 C and one has a charge of 5.0 x 10-6 C. What is the dist

ance between the charges?
Physics
1 answer:
zalisa [80]3 years ago
6 0

Answer:

F= kq1q2÷r^2 r=√9x10^9 x 2.0 x 10^-5 x 5.0x 10^-6 ÷ 1000 ) the ansewer√300

You might be interested in
The diagram shows what happens to a system undergoing an adiabatic process.
posledela
The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
5 0
3 years ago
Read 2 more answers
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Which element could not form in the sun and would have to be formed in a supernova?
Nimfa-mama [501]
Uranium (atomic number 92)
3 0
3 years ago
Which is not a form of light?
kifflom [539]

Radio waves, Middle-C, and halitosis are not forms of light.

8 0
3 years ago
Which produces more carbon dioxide?
Serhud [2]
It depends on the car and the home and what it is producing but most commonly it would be cars producing more carbon dioxide.
6 0
4 years ago
Other questions:
  • Which is a chemical property of magnesium?
    11·2 answers
  • How many values must a 1-D<br> motion problem give you in<br> order to solve it?
    6·1 answer
  • What do we call the distance between any two successive crests of a wave
    9·1 answer
  • Rounded to the nearest whole number, how many protons are in an atom of krypton?
    6·2 answers
  • The strength of gravitational force is affected by the distance between objects and which of the following?​
    10·1 answer
  • The weight of object is more in the poles than the equtor of the earth.why?​
    8·1 answer
  • HEY can anyone tell me the Atomic Mass of Helium and also what ever the number u get pls round it!!
    11·2 answers
  • In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the hot source at 273 K and 3.00 kJ of work is generated. Wha
    6·2 answers
  • Explain one inference scientists made about the interior of the Earth based on seismic waves. Use the words S &amp; P waves in y
    7·1 answer
  • Science, who ever answers this will get a brainlest
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!