Answer:
744.9 mmHg ≅ 745 mmHg
Explanation:
The base to solve this, is the Ideal Gases Law. The mentioned formula is:
P . V = n . R . T
To compare two situations, we can propose:
For the first situation P₁ . V₁ = n₁. R . T₁
For the second situation P₂ . V₂ = n₂ . R . T₂
As the sample has the same moles and R is a constant value, we can avoid them so: (P₁ . V₁) / T₁ = (P₂ . V₂) / T₂
We need to make Tº unit conversion:
25ºC + 273 = 298K
We replace data → (370 mL . 1020 mmHg) / 298K = (P . 510 mL) / 300 K
(377400 mL.mmHg / 298K) . 300 K = P . 510 mL
379932.8 mL . mmHg = P . 510 mL
(379932.8 mL . mmHg) / 510 mL = P → 744.9 mmHg
Answer:
Stalactites - Hang from caves ceilings
Stalagmites - Grow from cave floors
Sinkholes - Collapsed caves
Speleothems - Cave features
Explanation:
Got it right :)
Answer:
The answer to your question is: V = 6.93 L
Explanation:
Data
N₂ = 5.6 g
Volume of NH₃ = ?
14 g of N ---------------- 1 mol
5.6 g ----------------------- x
x = (5.6 x 1) / 14 = 0.4 mol of N
Reaction
N₂ + 3H₂ ⇒ 2NH₃
1 mol of N₂ ---------------- 2 moles of NH₃
0.4 mol of N₂ -------------- x
x = (0.4 x 2) / 1
x = 0.8 mol of NH₃
Formula
PV = nRT
P = 5200 torr = 6.84 atm
V = ?
n = 0.8
R = 0.082 atm L/ mol °K
T = 450°C = 723°K
Substitution
V = (0.8)(0.082)(723) / 6.84
V = 6.93 L
Hey There!:
Molar Mass KI => 166.003 g/mol
* number of moles:
n = mass of solute / molar mass
n = 49.8 / 166.003
n = 0.3 moles KI
Therefore:
M = n / V
M = 0.3 / 1.00
M = 0.3 mol/L
hope this helps!