Answer : The atomic radius for Ti is, ![1.45\times 10^{-8}cm](https://tex.z-dn.net/?f=1.45%5Ctimes%2010%5E%7B-8%7Dcm)
Explanation :
Atomic weight = 47.87 g/mole
Avogadro's number ![(N_{A})=6.022\times 10^{23} mol^{-1}](https://tex.z-dn.net/?f=%28N_%7BA%7D%29%3D6.022%5Ctimes%2010%5E%7B23%7D%20mol%5E%7B-1%7D)
First we have to calculate the volume of HCP crystal structure.
Formula used :
.............(1)
where,
= density = ![4.51g/cm^3](https://tex.z-dn.net/?f=4.51g%2Fcm%5E3)
Z = number of atom in unit cell (for HCP = 6)
M = atomic mass = 47.87 g/mole
= Avogadro's number
V = volume of HCP crystal structure = ?
Now put all the values in above formula (1), we get
![4.51g/cm^3=\frac{6\times (47.87g/mol)}{(6.022\times 10^{23}mol^{-1}) \times V}](https://tex.z-dn.net/?f=4.51g%2Fcm%5E3%3D%5Cfrac%7B6%5Ctimes%20%2847.87g%2Fmol%29%7D%7B%286.022%5Ctimes%2010%5E%7B23%7Dmol%5E%7B-1%7D%29%20%5Ctimes%20V%7D)
![V=1.06\times 10^{-22}cm^3](https://tex.z-dn.net/?f=V%3D1.06%5Ctimes%2010%5E%7B-22%7Dcm%5E3)
Now we have to calculate the atomic radius for Ti.
Formula used :
![V=6R^2c\sqrt{3}](https://tex.z-dn.net/?f=V%3D6R%5E2c%5Csqrt%7B3%7D)
Given:
c/a ratio = 1.669 that means, c = 1.669 a
Now put (c = 1.669 a) and (a = 2R) in this formula, we get:
![V=6R^2\times (1.669a)\sqrt{3}](https://tex.z-dn.net/?f=V%3D6R%5E2%5Ctimes%20%281.669a%29%5Csqrt%7B3%7D)
![V=6R^2\times (1.669\times 2R)\sqrt{3}](https://tex.z-dn.net/?f=V%3D6R%5E2%5Ctimes%20%281.669%5Ctimes%202R%29%5Csqrt%7B3%7D)
![V=(1.669)\times (12\sqrt{3})R^3](https://tex.z-dn.net/?f=V%3D%281.669%29%5Ctimes%20%2812%5Csqrt%7B3%7D%29R%5E3)
Now put all the given values in this formula, we get:
![1.06\times 10^{-22}cm^3=(1.669)\times (12\sqrt{3})R^3](https://tex.z-dn.net/?f=1.06%5Ctimes%2010%5E%7B-22%7Dcm%5E3%3D%281.669%29%5Ctimes%20%2812%5Csqrt%7B3%7D%29R%5E3)
![R=1.45\times 10^{-8}cm](https://tex.z-dn.net/?f=R%3D1.45%5Ctimes%2010%5E%7B-8%7Dcm)
Therefore, the atomic radius for Ti is, ![1.45\times 10^{-8}cm](https://tex.z-dn.net/?f=1.45%5Ctimes%2010%5E%7B-8%7Dcm)