Answer:
The amount of heat absorbed is <u>5.183889 kJ</u> .
Explanation:
In conversion of water to ice it rejects some heat while in conversion of ice to water it absorbs heat which is called latent heat which is given as 6.02 kJ/mol.
The amount of ice given is 15.5 g.
Converting it to moles as the latent heat is given in per moles:

Molecular mass of Hydrogen (H) and Oxygen (O) is 1 u and 16 u respectively.
Molecular mass of water is 18 g (
⇒ 2*1+16=18 ).
mole = 15.5/18 ≈ 0.8611 moles
Therefore the amount of heat absorbed by 15.5 g of ice ( 0.8611 moles) = <em>Latent heat * moles
</em>
Heat absorbed = 6.02*0.8611
= 6.02*(15.5/18)
≈ 5.183889 kJ
Answer:
A fundamental interaction of nature that acts between subatomic particles of matter. The strong force binds quarks together in clusters to make more-familiar subatomic particles, such as protons and neutrons. Something like that.
Explanation:
Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles =
= 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles =
= 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce
= 1.79moles of CF₄
Answer:
6960 J/kg°C
Explanation:
specific heat= mass×specific heat capacity×increase in temperature
specific heat= 0.240×1450×20= 6960 J/kg°C
hope it helps!
Answer:
Answer is Ca2+(aq)+S2-(aq)=>CaS(s)
Explanation:
I hope it's helpful!