1. Antelope Canyon was formed by the erosion of Navajo Sandstone.
2. The appearance of water is determined
by the way the water molecules are moving.
3. Moist rising air near the Equator cools and condenses into clouds and, later, rain.
In a sample of H2SO4 that contain 200 S atom the number of hydrogen atoms would be 400 atoms
explanation
there are two moles of H2 in H2SO4 therefore by use of ratio between S:H2 which is 1:2 atoms therefore the atoms of hydrogen = 2 x200 = 400 atoms
Answer:
A
Explanation: The definition of a compound is two elements chemically connected
When you assume that the gas is behaving ideally, the gas molecules are very far from each other that they do not have any intermolecular forces. If it behaves this way, you can assume the ideal gas equation:
PV = nRT, where
P is the pressure
V is the volume
n is the number of moles
R is a gas constant
T is the absolute temperature
When the process goes under constant pressure (and assuming same number of moles),
P/nR = T/V = constant, therefore,
T₁/V₁=T₂/V₂
If V₂ = V₁(1+0.8) = 1.8V₁, then,
T₂/T₁ = 1.8V₁/V₁
Cancelling V₁,
T₂/300=1.8
T₂ =540 K
If you do not assume ideal gas, you use the compressibility factor, z. The gas equation would now become
PV =znRT
However, we cannot solve this because we don't know the value of z₁ and z₂. There will be more unknowns than given so we won't be able to solve the problem. But definitely, the compressibility factor method is more accurate because it does not assume ideality.
Answer:
a) and d) are false.
Explanation:
a) The second law of thermodynamics states that t<u>he entropy of the universe increases in a spon
taneous process and remains unchanged in an equilibrium process.</u>
For a spontaneous process:
ΔSuniv = ΔSsys + ΔSsurr > 0
For a spontaneous process, the second law says that ΔSuniv must be greater than zero, but it does not place a restriction on either ΔSsys or ΔSsurr. Thus, it is possible for either ΔSsys or ΔSsurr to be negative, as long as the sum of these two quantities is greater than zero.
d) <u>A reaction that does occur under the given set of conditions is called a</u> spontaneous reaction. We observe spontaneous physical and chemical processes every day, including many of the following examples:
• A waterfall runs downhill, but never up, spontaneously.
• A lump of sugar spontaneously dissolves in a cup of coffee, but dissolved sugar does not spontaneously reappear in its original form.
• Heat flows from a hotter object to a colder one, but the reverse never happens spontaneously.