Hello!
Answer: 14.3%
Explanation: In order to find the mass percent of hydrogen in this compound, you must determine how many grams of hydrogen you'd get in 100 g of compound.
In your case, you know that an unknown mass of hydrogen reacts with 0.771 g of carbon to form 0.90 g of hydrocarbon, which is a compound that contains only carbon and hydrogen.
Use the total mass of the hydrocarbon to determine how many grams of hydrogen reacted with the carbon.
Now, if 0.90 g of this compound contain 0.129 g of hydrogen, it follows that 100 g of this compound will contain.
So, if 100 g of this compound contain 14.33 g of hydrogen, it follows that the mass percent of hydrogen is 14.3%
Hope this Helps! Have A Wonderful Day! :)
Heya it seems you’ve made a mistake in one of your plausible answers.. as for me l got 0.64M so l am thinking the option a will be in a decimal form
Answer:- The gas needs to be transferred to a container with a volume of 11.2 L.
Solution:- From Boyle's law. "At constant temperature, Volume is inversely proportional to the pressure."
It means, the volume is decreased if the pressure is increased and vice versa.
Here, the Pressure is decreasing from 537 torr to 255 torr. So, the volume must increase and calculated by using the equation:

Where,
is initial pressure and
is final pressure. Similarly,
is initial volume and
is final volume.
Let's plug in the values in the equation:
(537 torr)(5.30 L) = (255 torr)(
)

= 11.2 L
So, the new volume of the container needs to be 11.2 L.
Here are a few examples :)
iodine (I2)
naphthalene
aresenic (As)
ferrocene
water (H2O)
carbon dioxide (CO2)
Hope this helps :)
As long as matter cannot be destroyed or created , nothing can be gained or lost.
there is zero impact and hence one cannot numerate the impact