When multiplying out you get:
x2+4x-3x-12....
so you'd be adding the +4x to the -3x
x2 + x - 12
Answer: The number is: "2 " .
__________________________________________
Explanation:
__________________________________________
Write the expression; which is an equation, as follows:
__________________________________________
" 4x <span>− 12 = 2(-x) " ; in which "x" represents "the number for which we shall solve" .
___________________________________________
Note:
If the "number" = "x" ; the "opposite of the number" = " -x " ;
</span>___________________________________________
Rewrite as: " 4x <span>− 12 = -2x " ;
</span>_____________________________________________
→ Add "12" ; & add "2x" ; to EACH SIDE of the equation:
4x − 12 + 12 + 2x = -2x + 12 + 2x ;
to get: 6x = 12 ;
____________________________________________________
Now, divide each side of the equation by "6" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
____________________________________________________
6x / 6 = 12 / 6 ;
to get: x = 2 .
____________________________________________________
Answer: The number is: "2 " .
____________________________________________________
Let us check our answer, by plugging in "2" for "x" in our original equation:
_____________________________________________________
→ " 4x − 12 = 2(-x) " ;
Let us plug in "2" for "x" ; to see if the equation holds true; that is; if both side of the equation are equal; when "x = 2" ;
→ " 4(2) − 12 = ? 2(-2) ??
→ 8 − 12 = ? -4 ? ;
→ -4 = ? -4 ?? Yes!
__________________________________________________
Answer:
It does
Step-by-step explanation:
It does have a proportional relationship because if you try to find the relationship between the first two inputs and outputs, you can find that it is 21 (1 to 21, 21 divided by 1 would be 21) then if you use that relationship with the other numbers (times 21) you would get the same answer. For example in the second one, the two numbers are 2 and 42, 2 times 21 would equal 42. The next one would be 3 times 21 to equal 63 and etc.
Hope this Helps!!
They are both in the thousands places
The inequality that can be used to represents all possible combinations of x, the number of hamburgers and y, the number of briskets that will be cooked is 5y + 0.25x ≤ 150
Given:
pounds of brisket = 5 lb
Pounds of hamburger = 0.25 lb
Total pounds of briskets and hamburgers = no more than 150 lb
number of hamburgers = x
number of briskets = y
No more than in inequality = (≤)
The inequality:
5y + 0.25x ≤ 150
Therefore, inequality that can be used to represents all possible combinations of x, the number of hamburgers and y, the number of briskets that will be cooked is 5y + 0.25x ≤ 150
Learn more about inequality:
brainly.com/question/18881247