The parabola will show the vertex in the format: y-k = (x-h)^2, where the vertex point
lies at (h, k).

let's first put it in "y =" standard format:

Since we cannot get a perfect square out of this, we complete the square: a=1, b=2, c=3
(b/2)^2 = (2/2)^2 = 1, so

So there's +2 leftover, since 3-1=2; so:

Now we'll subtract the 2 from both sides to show our vertex:

where our vertex (h, k) is at (-1, 2)
Answer:
......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Step-by-step explanation:
Answer:
x=-1
Step-by-step explanation:
Answer:
Your answer is <em>6x</em>
Step-by-step explanation:
Given,
length(l) = 3x
breadth(b) = 2x
area of a rectangle(A) = ?
Now,
A = l*b
A = 3x*2x
A = 6x ans.
Hope its helpful!
Please mark me as brainlist.
Answer:
Graph the second equation by finding two data points. By setting first x and then y equal to zero it is possible to find the y intercept on the vertical axis and the x intercept on the horizontal axis. At the point of intersection of the two equations x and y have the same values.