Answer:
Option B. AA
Step-by-step explanation:
we know that
Angle-Angle (AA) Similarity Postulate, states that If two angles of one triangle are congruent to two angles of another, then the triangles must be similar
In this problem
<em>In the triangle XYZ</em>
∠X=70°
∠Y=90°
∠Z=90°-70°=20° (remember that angle X and angle Z are complementary)
<em>In the triangle UWV</em>
∠V=20°
∠W=90°
∠U=90°-20°=70° (remember that angle V and angle U are complementary)
therefore
Traingles XYZ and UWV are similar by AA Similarity Postulate
Answer:
121
Step-by-step explanation:
To convert an angle from degrees to radians, multiply by π/180°.
Your angle is
(-280°)*(π/180°) = -14π/9
The appropriate choice is ...
B) (-14π/9)
The minimum distance is the perpendicular distance. So establish the distance from the origin to the line using the distance formula.
The distance here is: <span><span>d2</span>=(x−0<span>)^2</span>+(y−0<span>)^2
</span> =<span>x^2</span>+<span>y^2
</span></span>
To minimize this function d^2 subject to the constraint, <span>2x+y−10=0
</span>If we substitute, the y-values the distance function can take will be related to the x-values by the line:<span>y=10−2x
</span>You can substitute this in for y in the distance function and take the derivative:
<span>d=sqrt [<span><span><span>x2</span>+(10−2x<span>)^2]
</span></span></span></span>
d′=1/2 (5x2−40x+100)^(−1/2) (10x−40)<span>
</span>Setting the derivative to zero to find optimal x,
<span><span>d′</span>=0→10x−40=0→x=4
</span>
This will be the x-value on the line such that the distance between the origin and line will be EITHER a maximum or minimum (technically, it should be checked afterward).
For x = 4, the corresponding y-value is found from the equation of the line (since we need the corresponding y-value on the line for this x-value).
Then y = 10 - 2(4) = 2.
So the point, P, is (4,2).
Answer:
$30
Step-by-step explanation:
$160-$130=$30