Answer:
25/30
5/8
Step-by-step explanation:
Which fraction is it out of all of these 6/14,5/8,25/30,or 3/6?
to determine which fractions are greater than 1/2, convert the fractions to decimals
to convert to decimals, divide the numerator by the denominator
1/2 = 0.5 less than half
6/14 = 0.43 less than half
5/8 = 0.625 greater than half
25 / 30 = 0.83 greater than half
3 / 6 = 0.5 equal to half
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
Answer:
-1/3
Step-by-step explanation:
Taking two points on the graph (I took (0,9) and (6,7)
Slope=(y2-y1)/(x2-x1)
(7-9)/(6-0)=-2/6
=-1/3
Answer:
10 5/8
Step-by-step explanation:
Answer:
The odd function is written f (x) = (x) and rounds the odd numbers to the nearest integer.
The graph of f (x) = (x) includes the point (17/4), (7/2), (15/6)
Step-by-step explanation:
The odd function seeks to round odd numbers, with fractions of first odd numbers and then even by adding 3 to them.