<h3>Answers:</h3>
- A) No, it is not a function
- B) Yes it's a function
- C) Not a function
- D) Yes it's a function
- E) Yes it's a function
================================================
Explanation:
If y has an exponent of 2, 4, 6, etc (basically any even number) then it leads to having inputs with multiple outputs.
Consider something like y^2 = x. If x = 100, then y = 10 or y = -10 are possible. A function can only have exactly one y output for any valid x input. Similar issues happen for things like y^4 = x and so on. So this is why A and C are not functions.
The other equations do not have y values with such exponents, so we can solve for y and have each x input lead to exactly one y output. Therefore, they are functions.
Answer:
a) ⅓ units²
b) 4/15 pi units³
c) 2/3 pi units³
Step-by-step explanation:
4y = x²
2y = x
4y = (2y)²
4y = 4y²
4y² - 4y = 0
y(y-1) = 0
y = 0, 1
x = 0, 2
Area
Integrate: x²/4 - x/2
From 0 to 2
(x³/12 - x²/4)
(8/12 - 4/4) - 0
= -⅓
Area = ⅓
Volume:
Squares and then integrate
Integrate: [x²/4]² - [x/2]²
Integrate: x⁴/16 - x²/4
x⁵/80 - x³/12
Limits 0 to 2
(2⁵/80 - 2³/12) - 0
-4/15
Volume = 4/15 pi
About the x-axis
x² = 4y
x² = 4y²
Integrate the difference
Integrate: 4y² - 4y
4y³/3 - 2y²
Limits 0 to 1
(4/3 - 2) - 0
-2/3
Volume = ⅔ pi
The compound interest formula is : 
where, A= Future value including the interest,
P= Principle amount, r= rate of interest in decimal form,
t= number of years and n= number of compounding in a year
Here, in this problem P= $ 51,123.21 , t= 20 years and 2 months
So, t= 20 + (2/12) years
t= 20 + 0.17 = 20.17 years
As the amount is compounded daily, so n= (12×30)= 360 [Using the traditional Banker’s rule of 30 days per month]
Thus, 
When the interest rate is given, then we can use this equation for finding the future value.