Energy can be released and absorbed during the formation of a solution, not one or the other. When a solute interacts with the solvent, energy is absorbed so the solvent can overcome the intermolecular bonds of the solute and energy is released, most commonly, in the form of heat, light, or a gaseous byproduct.
Answer:
your velocity is 2.5 m/sec
Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s
Answer:
Answered
Explanation:
a) What is the work done on the oven by the force F?
W = F * x
W = 120 N * (14.0 cos(37))
<<<< (x component)
W = 1341.71
b) 

= 29.4 N


W_f= 328.72 J = 329 J
c) increase in the internal energy
U_2 = mgh
= 12*9.81*14sin(37)
= 991 J
d) the increase in oven's kinetic energy
U_1 + K_1 + W_other = U_2 + K_2
0 + 0 + (W_F - W_f ) = U_2 + K_2
1341.71 J - 329 J - 991 J = K_2
K_2 = 21.71 J
e) F - F_f = ma
(120N - 29.4N ) / 12.0kg = a
a = 7.55m/s^2
vf^2 = v0^2 + 2ax
vf^2 = 2(7.55m/s)(14.0m)
V_f = 14.5396m/s
K = 1/2(mv^2)
K = 1/2(12.0kg)(14.5396m/s)
K = 87.238J
The answer is A, the volume increases.
hope this helps