1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
1 year ago
10

A 25kg child resting at the top of a 2 meter slide has how much potential energy?

Physics
1 answer:
levacccp [35]1 year ago
3 0

Potential energy of a child at the top is 490 J.

Potential energy, U = mgh

U = potential energy

m  = mass of an object, given = 25kg

g = acceleration due to gravity, given = 9.8 m/s^{2}

h = height of an object, given = 2 meter

Put the values in potential energy formula, U = mgh

U = mgh

U = 25 × 9.8 × 2

U = 490 J

Hence, Potential energy of a child at the top is 490 J.

Potential energy is the  type of energy, which is product of mass of an object, acceleration due to gravity and height of an object where it is placed. Its S.I. unit is joule and is represented by J.

Learn more about potential energy here:- brainly.com/question/14427111

#SPJ1

You might be interested in
Due today HELP HELP HELP
Anna [14]

Vas happenin!

Independent variable : amount of water each day

Dependent variable: water on the windsill

Hypotheses: Ben wants to try by adding water each day to two different places. Will that work? Will that effect the water?


Hope this helps you out

*smiles*


-Zayn Malik
5 0
2 years ago
Help meh in this question plzzz <br>​
iragen [17]

The Moment of Inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:

I = I_{D} - I_{H} (1)

Where:

  • I_{D} - Moment of inertia of the Disk.
  • I_{H} - Moment of inertia of the Hole.

Then, this formula is expanded as follows:

I = \frac{1}{2}\cdot M\cdot R^{2} - \frac{1}{2}\cdot m\cdot \left(\frac{1}{2}\cdot R^{2} \right) (1b)

Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (m):

\frac{m}{M} = \frac{R^{2}}{4\cdot R^{2}}

m = \frac{1}{2}\cdot M

And the resulting equation is:

I = \frac{1}{2}\cdot M\cdot R^{2} -\frac{1}{2}\cdot \left(\frac{1}{4}\cdot M \right) \cdot \left(\frac{1}{4}\cdot R^{2} \right)

I = \frac{1}{2} \cdot M\cdot R^{2} - \frac{1}{32}\cdot M\cdot R^{2}

I = \frac{15}{32}\cdot M\cdot R^{2}

The moment of inertia of the Disc is represented by I = \frac{15}{32}\cdot M\cdot R^{2}. (Correct answer: A)

Please see this question related to Moments of Inertia: brainly.com/question/15246709

5 0
3 years ago
Why mole is called fundamental unit.​
gladu [14]

Explanation:

because it doesn't depend upon other unit like kg meter and second

4 0
3 years ago
The Moon is attracted to the Earth. The mass of the Earth is 6.0x1024 kg and the mass of the Moon is 7.4x1022 kg. If the Earth a
xxTIMURxx [149]

Sorry I don't know the answer

7 0
3 years ago
CAN SOMEONE PLEASE HELP ME WITH MY PHYSICS QUESTIONS? I NEED CORRECT ANSWERS ONLY!
BARSIC [14]
<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />

According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.  

Now, in this case we are on Earth, so the gravity value is 9.8\frac{m}{s^{2}}  

Note the objects experience the acceleration of gravity regardless of their mass.

Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely  true on Earth, unless the following condition is fulfiled:

If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at 9.8\frac{m}{s^{2}} and hit the ground at approximately the same time.  


5 0
3 years ago
Other questions:
  • Energy
    6·2 answers
  • The electrons of photosystem ii are excited and transferred to electron carriers. From which molecule or structure do the photos
    14·1 answer
  • What is the potential drop across R3? (R1 = 20 Ω, R2 = 40 Ω, R3= 60 Ω, V = 60 V) (Ohm's law: V = IR)
    5·1 answer
  • Why does the light from the touch reach upto only certain distance
    6·1 answer
  • PLEASE HELP ME Color corresponds to the ______________ of light waves. wave speed cycles wavelength
    13·1 answer
  • Bill is throwing a football at four targets and attempting to knock them over. Which of the following targets will be hardest fo
    6·1 answer
  • Which of these statements best represents the law of conservation of energy
    14·1 answer
  • If the voltage and resistance in a circuit both double, what happens to the current? use ohm’s law to explain your answer.
    6·1 answer
  • A company has created an ice cream that has zero calories, but it is made with chemicals that recently were proven to cause canc
    7·1 answer
  • A cubical gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!