1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
6

Hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Mathematics
2 answers:
german3 years ago
7 0
9x9 = 81
Square root = 3
81-3 = 78
tatuchka [14]3 years ago
5 0
Hiiii? what is the question
You might be interested in
How to find the perimeter of a right triangle
QveST [7]

Answer:

There are three primary methods used to find the perimeter of a right triangle.

1. When side lengths are given, add them together.

2. Solve for a missing side using the Pythagorean theorem.

3. If we know side-angle-side information, solve for the missing side using the Law of Cosines.

Step-by-step explanation:

there i hope this helps!!!

6 0
3 years ago
2//2/2/3/2/2//3/3/3//3/3/4/5/5​
Wewaii [24]

Answer:  

can u be more specific so i can properly help u  

Explanation:  

pls explain and i will edit my answer  

6 0
3 years ago
Read 2 more answers
PLEASE HELP FAST The Booster Club raised $30,000 for a sports fund. No more money will be placed into the fund. Each year the fu
zloy xaker [14]

Answer:

c. $24,435

Step-by-step explanation:

30000(1 - .05)^{4} = 24,435.19

3 0
3 years ago
What is the area of a rectangle that has side lengths of 3/4 yard and 5/6 yard
Ahat [919]

We are asked to find the area of the rectangle that has side lengths of 3/4 yard and 5/6 yard.

We know that area of rectangle is width times length.

To find the area of the given rectangle we will multiply both side lengths as:

\text{Area of rectangle}=\text{Width}\times \text{Length}

\text{Area of rectangle}=\frac{3}{4}\text{ yard}\times\frac{5}{6}\text{ yard}

\text{Area of rectangle}=\frac{3}{4}\times\frac{5}{6}\text{ yard}^2

\text{Area of rectangle}=\frac{1}{4}\times\frac{5}{2}\text{ yard}^2

\text{Area of rectangle}=\frac{1\times5}{4\times2}\text{ yard}^2

\text{Area of rectangle}=\frac{5}{8}\text{ yard}^2

Therefore, the area of the given rectangle would be \frac{5}{8} square yards.

5 0
3 years ago
What is the completely factored form of f(x)=x^3-7x^2+2x+4
xxMikexx [17]

Solution, \mathrm{Factor}\:x^3-7x^2+2x+4:\quad \left(x-1\right)\left(x^2-6x-4\right)

Steps:

x^3-7x^2+2x+4

Use\:the\:rational\:root\:theorem,\\a_0=4,\:\quad a_n=1,\\\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:4,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\\\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm \frac{1,\:2,\:4}{1},\\\frac{1}{1}\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x-1,\\\left(x-1\right)\frac{x^3-7x^2+2x+4}{x-1}

\frac{x^3-7x^2+2x+4}{x-1}

\mathrm{Divide}\:\frac{x^3-7x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}x^3-7x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{x^3}{x},\\\mathrm{Quotient}=x^2,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}x^2:\:x^3-x^2,\\\mathrm{Subtract\:}x^3-x^2\mathrm{\:from\:}x^3-7x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-6x^2+2x+4,\\Therefore,\\\frac{x^3-7x^2+2x+4}{x-1}=x^2+\frac{-6x^2+2x+4}{x-1}

\mathrm{Divide}\:\frac{-6x^2+2x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-6x^2+2x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-6x^2}{x}=-6x,\\\mathrm{Quotient}=-6x,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-6x:\:-6x^2+6x,\\\mathrm{Subtract\:}-6x^2+6x\mathrm{\:from\:}-6x^2+2x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=-4x+4,\\\mathrm{Therefore},\\\frac{-6x^2+2x+4}{x-1}=-6x+\frac{-4x+4}{x-1}

\mathrm{Divide}\:\frac{-4x+4}{x-1},\\\mathrm{Divide\:the\:leading\:coefficients\:of\:the\:numerator\:}-4x+4\mathrm{\:and\:the\:divisor\:}x-1\mathrm{\::\:}\frac{-4x}{x}=-4,\\\mathrm{Quotient}=-4,\\\mathrm{Multiply\:}x-1\mathrm{\:by\:}-4:\:-4x+4,\\\mathrm{Subtract\:}-4x+4\mathrm{\:from\:}-4x+4\mathrm{\:to\:get\:new\:remainder},\\\mathrm{Remainder}=0,\\\mathrm{Therefore},\\\frac{-4x+4}{x-1}=-4

\mathrm{The\:Correct\:Answer\:is\:\left(x-1\right)\left(x^2-6x-4\right)}

\mathrm{Hope\:This\:Helps!!!}

\mathrm{-Austint1414}

8 0
3 years ago
Other questions:
  • The forest hiking trail is 3.5 miles long. The lake trail is 2.5 times longer than the forest trail. What is the length of the l
    11·2 answers
  • State whether f is a function
    6·2 answers
  • Find the perimeter of the figure to the nearest hundredth.
    13·1 answer
  • A practice law exam has 100 questions, each with 5 possible choices. A student took the exam and received 13 out of 100.If the s
    7·1 answer
  • What is the answer to 846 divided 353
    12·2 answers
  • Can anyone help me? Stuck on this :,)
    8·2 answers
  • Noah has 10 meters of rip .How many pieces of rope length 1/2 meter can he cut from?
    14·2 answers
  • Please help me with this, I need to find the missing angle of both of the triangles. Thank you. :))
    14·1 answer
  • Find the missing side length.
    12·1 answer
  • For every 2 cars you wash your friend wash 3 cars. You wash a total of 8 cars. How many did your friend wash.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!